

2003 ASAE/NAAA TECHNICAL SESSION

SPRAY MIX ADJUVANTS FOR SPRAY DRIFT MITIGATION

I. W. Kirk

Agricultural Research Service
U.S. Department of Agriculture
College Station, Texas

Introduction

- Spray drift is a major issue for pesticide applicators
- Spray droplet size is the primary factor influencing drift
- Applicators should first concentrate on nozzle selection and operating conditions for controlling droplet size
- Drift control adjuvants are a secondary tool in controlling droplet size and spray drift

Introduction

- Drift control adjuvants have been available in the modern marketplace for several years
- There are no product labeling or efficacy regulations for drift control adjuvants
- Applicators must be judicious in selection and use of drift control adjuvants
 - Experience
 - Technical information

Introduction

- Spray droplet size or Droplet Spectra Classification (DSC) now has specific definition in both technical and regulatory language
- ASAE Standard S572 AUG99 defines DSC in six categories – VF, F, M, C, VC, and XC
- □ Regulatory and product label language may specify droplet size either as DSC or volume median diameter, D_{v0.5}, e.g., 300 µm

Objective

- Determine effectiveness of recently-introduced drift control adjuvants for typical aerial applications
- Bases of assessments
 - Increased droplet size
 - Reduction of fine droplet content
 - Resistance to pump shear degradation

Materials and Methods – Product Selection

- Twelve drift control adjuvants were selected for the study
 - Synthetic polymers
 - Natural polymers
 - Other agents
 - Some are liquid and some are dry formulations

Materials and Methods — Products Included in the Study

Airex DC Direct

Array * In-Place

Border EG 250 * Intac Plus

Cell-U-Wett * SanAg 41-A *

Control Strike Zone PPS *

Corral Poly Valid

* Dry formulations

Materials and Methods – EC Blank Spray Mix

- 90 % tap water
- 10 % EC Blank
 - □ 92 % Aromatic 150 (ExxonMobil Corporation)
 - □ 6.4 % Toximul 3453F (Stephan Company)
 - 1.6 % Toximul 3454F (Stephan Company)
- Maximum adjuvant label rate for aerial application mixed in accord with manufacturers directions with gentle agitation with a centrifugal pump

Materials and Methods – "Wind Tunnel"

Materials and Methods — "Wind Tunnel" Protocol

- □ PMS Laser Spectrometer
- □ Three replicates, scan through plume and size 12,000 to 18,000 droplets, immediately after mixing on the first pass through a gear pump
- □ Three replicates, scan through plume and size 12,000 to 18,000 droplets, after eight passes through a gear pump

Materials and Methods – Spray Nozzle -- CP-03

Materials and Methods – Operational Conditions

- □ CP-03 Spray Nozzle
 - 0.078 Orifice
 - 30° Deflector
- Pressure
 - 30 psi
- Airspeed
 - 140 mph

Results – First Pass Through Pump $D_{v0.5}$, EC Blank = 278 μ m k

Adjuvant	D _{V0.5} , μm	Adjuvant	D _{V0.5} , μm	
Airex DC	338 h	Direct	368 f	
Array	357 g	In-Place	249 m	
Border EG 250	403 d	Intac Plus	276 k	
Cell-U-Wett	369 f	SanAg 41-A	336 hi	
Control	463 c	Strike Zone PPS	S 371 f	
Corral Poly	529 a	Valid	281 k	

Results – First Pass Through Pump %<200 μ m, EC Blank = 12.4 % c

Adjuvant	%<200μm	Adjuvant	%<200μm
Airex DC	5.3 gh	Direct	4.0 klm
Array	5.0 hi	In-Place	21.8 a
Border EG 250	3.5 m	Intac Plus	13.1 c
Cell-U-Wett	4.6 ijk	SanAg 41-A	6.2 f
Control	2.6 n	Strike Zone	PPS 4.5 ijkl
Corral Poly	1.5 o	Valid	11.6 d

Results – DSC₁ and DSC₈, EC Blank = F First and Eighth Pass Through Pump

Adjuvant	DSC ₁	DSC ₈	Adjuvant	DSC ₁	DSC ₈
Airex DC	F	F	Direct	M	F
Array	M	M	In-Place	F	F
Border EG 250	M	M	Intac Plus	F	F
Cell-U-Wett	M	M	SanAg 41-A	F	F
Control	M	M	Strike Zone PP	S M	M
Corral Poly	С	M	Valid	F	F

Spray Mix Adjuvants for Spray Drift Mitigation Summary

- Corral Poly provided the largest droplet spectrum and the lowest percentage of driftable fine droplets; Control was second best in improving drift mitigation properties of the EC Blank spray mix
- Most of the adjuvants moved the droplet spectra classification from Fine to Medium
- In-Place, Intac Plus, and Valid were ineffective in improving drift mitigation properties of the EC Blank spray mix
- Four of the five dry-formulated adjuvants did not degrade from eight passes through a gear pump

Spray Mix Adjuvants for Spray Drift Mitigation Summary

- Drift control adjuvant performance information can aid pesticide applicators in selection of drift reducing agents
- □ The measure of spray drift mitigation attained with drift control adjuvants is a matter that applicators can balance or optimize based on agent performance and economics to achieve drift mitigation goals for a given application

U.S. Department of Agriculture
Agricultural Research Service
College Station, Texas

-- Time for Questions --

